Syllabus

Course Number: CS 390
Course Title: Principles of Programming Languages

Course Description

CS390 Principles of Programming Languages (3). Introduces the constructs upon which contemporary programming languages are based. Students investigate programs written in declarative and imperative programming languages including functional, logic, structured, and object-based approaches.

Prerequisite Courses

CS208 CS Fundamentals or CS202 Computational Foundations
AND
CS362 Data Structures or CS310 Data Structures
AND
MT320 Discrete Mathematics

Course Overview

Eight primary programming language topics will be covered by this course. They are general programming language principles and evolution, syntax, semantics, design paradigms, construct declaration, typing of data, lambda calculus, and programming languages in practice.

Course Outcomes

Upon completion of this course, learners should be able to:

1. Describe distinguishing characteristics of declarative (functional & logical) and imperative (procedural & object-oriented) programming language paradigms and explain how these characteristics manifest in historic and contemporary programming languages.

2. Evaluate syntactic, semantic, and pragmatic tradeoffs among the various programming paradigms and different programming languages.

3. Summarize the history and continuing evolution of programming languages.

4. Demonstrate different forms of declaration, typing, binding, visibility, scoping, and lifetime management for various programming language constructs (e.g variables, functions, etc.).

5. Use formal systems, including Lambda Calculus, to explain and model various programming language concepts.
6. Develop and analyze programs written in the various programming paradigms.

7. Choose an appropriate programming language solution for a given programming task.

Course Materials

Required Texts:

Required Resources:

Supplemental Weekly Readings (given out in class and online).

Technology Tools:

- SWI-Prolog (free at: http://www.swi-prolog.org)
- Haskell (free at: http://www.haskell.org/haskellwiki/Haskell)

Pre-Assignment:

- Read Chapter 1 of both the Sebesta and Tate textbooks (see below).

Online Format: Sign on to worldclass.regis.edu and become familiar with the course navigation of the Web Curriculum. Complete the assignment above.

Classroom-based Format: Complete assignment above by the first night of class.
<table>
<thead>
<tr>
<th>Topics</th>
<th>Readings</th>
<th>Activities Assignments and Associated Points*</th>
</tr>
</thead>
</table>
| 1 | Overview & History
Language Design Paradigms, Imperative
Type Systems
Languages in Practice: Ruby | Sebesta, R. W., (2010):
Chapter 1 and §6.1, §6.6, §6.10 – §6.12
Tate, B.A., (2010):
§1.0 – §1.1, §2.0 – §2.3
Handouts:
(i) Introduction,
(ii) Motivational design examples,
(iii) Paradigms,
(iv) Motivation type examples,
(v) Types Systems: Part I
(vi) Programming Guidelines | Participation in Discussions (10% for entire course)
Assignment #1 (10%)
Due:
Classroom: Start of Wk 2 class
Online: End of Wk 1 |
| 2 | Syntax
Language Design: Object-Oriented
Lambda Calculus Syntax
Languages in Practice: Ruby | Sebesta:
§3.1:-§3.4, §4.1-§4.5
§12.1:-§12.2 & §12.9
Tate:
§2.3 – §2.5.
Handouts:
(i) Syntax,
(ii) Attribute Grammar,
(iii) Lambda Calculus I | Assignment #2 (10%)
Due:
Classroom: Start of Wk 3 class
Online: End of Wk 2 |
| 3 | Semantics: Overview & Operational
Language Design: Declarative & Logical
Lambda Calculus Semantics
Languages in Practice: Prolog | Sebesta:
§3.5 & Chapter 16
Tate:
§4.1 – §4.2
Handouts:
(i) Semantics,
(ii) Lambda Part II
(iii) Logical Programming
(iv) CLP(R) | Assignment #3 (10%)
Due:
Classroom: Start of Wk 4 class
Online: End of Wk 3 |
| 4 | Declarations
Language Design Scripting | Sebesta:
Chapter 5 & §2.18
Handouts
(i) Declarations
(ii) Scripting Languages | Midterm Exam (15%)
Due:
Classroom: Take Home
Online: End of Wk 4 |
| 5 | • Semantics
 Denotational
 Languages in Practice:
 Prolog
 Sebesta: §3.5
 Tate: §4.3 – §4.5
 Handouts:
 (i) Denotational Semantics
 (ii) Semantic Algebra
 (iii) Examples
 Assignment #4 (10%)
 Due:
 Classroom: Start of Wk 6 class
 Online: End of Wk 5 |
| 6 | • Language Design
 Functional
 Lambda Calculus
 Encoding & Applied
 Languages in Practice:
 Haskell
 Sebesta: Chpt. 15
 Tate: §8.1-§8.2
 Handouts:
 (i) Functional Programming
 (ii) Lambda Encoding
 (iii) Applied Lambda Calculus
 Assignment #5 (10%)
 Due:
 Classroom: Start of Wk 7 class
 Online: End of Wk 6 |
| 7 | • Type Systems: Formal
 System
 Lambda Calculus
 Typed Calculus
 Languages in Practice:
 Haskell
 Sebesta: §6.10-§6.12
 Chapter 11
 Tate: §8.3-§8.5
 Handout:
 (i) Typed Lambda Calculus
 Assignment #6 (10%)
 Due:
 Classroom: Start of Wk 8 class
 Online: End of Wk 7 |
| 8 | • Language Design**
 o design criteria
 o abstract data type
 o object-oriented,
 concurrency, exceptions
 Reading**
 Sebesta: §1.6
 Sebesta: §11.1 - §11.4
 Sebesta: §12.1 - §12.2, §12.9
 Sebesta: §13.1- §13.2
 Sebesta: §14.1, §14.4 - §14.6
 Handouts:
 (i) Design Criteria
 Final Exam (15%)
 Due:
 Classroom: In class
 Online: End of Wk 8 |

Note to Classroom sections only: Exact dates for reading assignments and homework assignments may change and will be included in your faculty's syllabus, handed out the first night of class.

** These language design topics are also introduced and discussed in-depth in other courses.

Student Evaluation Summary

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Value (percent of overall course grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Participation in Discussions</td>
<td>10%</td>
</tr>
<tr>
<td>Programming Assignments (6)</td>
<td>60%</td>
</tr>
<tr>
<td>Midterm</td>
<td>15%</td>
</tr>
<tr>
<td>Final exam</td>
<td>15%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>
Course Policies and Procedures

Exams
There will be a midterm exam and a final exam. Exams may be timed; they might be open book, open notes, closed book, and/or closed notes. They might be in-class or take home. Exam questions will be cumulative, taken from reading assignments and class presentations and focus primarily on principles and concepts, as opposed to weekly programming assignments.

Late Assignments Policy
If you have not negotiated with the facilitator, assignments turned in late will be graded, then reduced by 3% per day. Assignments will not be accepted later than one week after due date. Week 8 assignment may only be 3 days late.

Adding this course during the Drop/Add Period
If you added this course during the drop/add period, after class began on Monday, you are responsible for immediately notifying the instructor that you joined the course late. None of the course due dates will be extended for you. Even if a due date already passed when you added the course, late points will still be deducted.

Plagiarism
Plagiarism includes submitting code or anything else that was obtained from any other person, publication, or any internet web source. All work submitted in CS390 must be your own.

In cases of suspected cheating or plagiarism, the instructor will discuss the matter with the student(s) involved. The instructor reserves the right to question any student orally or in writing about any assignment, and to use the evaluation of the student's understanding of the assignment and of the submitted solution as evidence of cheating. All cheating incidents will be reported to the Computer Science department, and may also be reported to the Academic Integrity Board for further action.

CC&IS Grading Scale

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93 to 100</td>
<td>4.00</td>
</tr>
<tr>
<td>A–</td>
<td>90 to less than 93</td>
<td>3.67</td>
</tr>
<tr>
<td>B+</td>
<td>87 to less than 90</td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td>83 to less than 87</td>
<td>3.00</td>
</tr>
<tr>
<td>B–</td>
<td>80 to less than 83</td>
<td>2.67</td>
</tr>
<tr>
<td>C+</td>
<td>77 to less than 80</td>
<td>2.33</td>
</tr>
<tr>
<td>C</td>
<td>73 to less than 77</td>
<td>2.00</td>
</tr>
<tr>
<td>C–</td>
<td>70 to less than 73</td>
<td>1.67</td>
</tr>
<tr>
<td>D+</td>
<td>67 to less than 70</td>
<td>1.33</td>
</tr>
<tr>
<td>D</td>
<td>63 to less than 67</td>
<td>1.00</td>
</tr>
<tr>
<td>D–</td>
<td>60 to less than 63</td>
<td>.67</td>
</tr>
</tbody>
</table>
Additional information about grading can be found in the latest edition of the University Catalog, available at http://www.regis.edu/Academics/Course%20Catalog.aspx

CC&IS Policies and Procedures

Each of the following CC&IS Policies & Procedures is incorporated here by reference. Students are expected to review this information each term, and agree to the policies and procedures as identified here and specified in the latest edition of the University Catalog, available at http://www.regis.edu/Academics/Course%20Catalog.aspx or at the link provided.

- The CC&IS Academic Integrity Policy.
- The Student Honor Code and Student Standards of Conduct.
- Incomplete Grade Policy, Pass / No Pass Grades, Grade Reports.
- The Information Privacy policy and FERPA. For more information regarding FERPA, visit the [U.S. Department of Education](http://www.ed.gov/policy/rrp186.html).
- The HIPPA policies for protected health information. The complete Regis University HIPAA Privacy & Security policy can be found here: http://www.regis.edu/About-Regis-University/University-Offices-and-Services/Auxiliary-Business/HIPAA.aspx.

The CC&IS Policies & Procedures Syllabus Addendum summarizes additional important policies including, Diversity, Equal Access, Disability Services, and Attendance & Participation that apply to every course offered by the College of Computer & Information Sciences at Regis University.