Uses of Classes

Do the classes group CA by their utility?
The Following Are Gross Generalizations!

- Don’t take these ideas of utility too literally!
 - They give a general idea of which class might have a CA that might solve a particular task.
 - By no means the final word!
Utility of Class I

- These CA go to simple fixed points.
 - Like all 0.

- Ok, so not very interesting.

- Don’t expect these to be used for much.
 - Might describe systems that are heavily damped.
 - E.g., spring with a heavy weight moving through viscous fluid.
Utility of Class II: Filters

- These CA take an initial state and weed out certain features.
 - Retains other features which then repeat.

- That’s what filters do!

- Think of class II as filters.
 - Filters are used to
 - Find details of images, like edges.
 - Weed out noise (e.g., “purify” electrical signals).
 - Remove viruses from incoming email.
 - Eliminate undesirable web sites.
 - Etc.
Class II Filter

- For example, we can build a CA that eventually filters out everything except an isolated 1.
 - 00100101110111101100 would filter to
 - 001001000000000000000000 would filter to
 - 0010010000000000000000000000000000 would filter to
 - Etc.

- Rule:
 - 111 110 101 100 011 010 001 000
 - 0 0 0 0 0 0 1 0

- What rule is that? Rule 4!
 - Rule 132 (10000100) would act similarly.
Class II: Smooth Filter

- A classic image processing filter “smoothes out” noise.
 - Sometimes called “mean”, “uniform”, or “smoothing” filter.
 - Treats 2-d image as array of numbers.
 - Image may have 256 colors... i.e., 256 states.
 - Image may have 2 colors... i.e., 2 states.
 - Replace each element of the array by the average of it’s neighbors.
 - Hey, that’s a totalistic CA!
 - What is the rule?
 - Just add neighbors (and self) and divide by 9. Round to the nearest allowable state.
The filter can be visualized as an array.

\[
\text{mean filter} = \frac{1}{9} \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

- This array of all 1’s is the CA neighborhood.
- It shows which neighbors are being added together.
- Divide by 9 because want the average.
- Then take the nearest integer value
Class II: Noise Filter

- Similar to “smooth” filter.
 - Replace each cell’s state with the state of the majority of cells in the neighborhood.
 - So if have a single noisy white pixel in a sea of solid blue, then this replaces that cell with the majority color of blue.

- Wait, that’s just the rule “majority wins”!

- Try it!
 - Use Cellular Automaton Explorer.
 - Create sea of one color. Add a little “salt and pepper” noise by changing a few pixels here and there. Run “majority wins” for one time step.
 - Now import a picture (recommend 2 states so black and white, but can also use many states – like 256). Change a few pixels in a uniform region. Run the filter.
Class II: Edge Filter

- Another classic image processing filter finds edges.
 - The following highlights any vertical edges in the image.

\[
\begin{pmatrix}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1 \\
\end{pmatrix}
\]

- Do term by term multiplication and add all the results together.
 - \[\text{neighbor[0]} \ast 1 + \text{neighbor[1]} \ast 0 + \text{neighbor[2]} \ast -1 + \text{neighbor[3]} \ast -1 + \text{neighbor[4]} \ast -1 + \text{neighbor[5]} \ast 0 + \text{neighbor[6]} \ast 1 + \text{neighbor[7]} \ast 1\]

- Take absolute value and round to nearest permissible value.

- Can you see what happens if an image is all white?
- Or if left half is black and right half is white?

- Could you write a CA rule that does this?
 - Add only those neighbors as shown above.
Class II: Another Edge Filter

- Works in all directions.
 - Cell becomes 0 if the difference between it’s value and its neighbor’s values is less than a threshold ε (for all of the neighbors).
 - Otherwise, cell keeps its current value.
 - i.e.

$$cell_{new} = 0, \text{ if } |cell_{currentValue} - neighbor[i]| < \varepsilon, \forall \text{ neighbors } i$$

$$cell_{new} = cell_{currentValue}, \text{ otherwise}$$

- Can you see what happens if an image is all white?
- Or if left half is black and right half is white?
Class II: Periodic Phenomena

- Class II can also be used to model periodic systems.
 - Waves
 - Ocean
 - Light
 - Audio
 - Springs
 - Zebra stripes
 - “The wave” at a football stadium.
 - Etc.

Assumes perfect periodicity. If there are variations, then must be class III.
Your Turn: Horizontal Edge Filter

- Write a Class II CA rule that performs as a horizontal edge filter.

- Use CA Explorer.
 - Remember how we wrote rules before?
 - Copy rule102.java.
 - Change name and alter the class.

- See the parameter “int[] neighbors”?
 - In 2-d neighbor[0] is to the upper left (northwest).
 - Continues clockwise.
 - So neighbor[1] is due north.
Your Turn: Restrict the Lattice

- You may want to restrict to square 8-neighbor lattices.
 - Prevent problems with the 1-d lattice.

- Override the getCompatibleLattices() method

  ```java
  public String[] getCompatibleLattices()
  {
      String[] lattices = {SquareLattice.DISPLAY_NAME};
      return lattices;
  }
  ```

- Don’t forget to change the tooltip and display name.
Utility of Class III: Physics!

- Most physical (and social) systems involve structures more complicated than periodic.
 - Sometimes randomness is even key.
 - So physics won’t often be Class I or II.

- Describing long term behavior of Class III CA difficult because final state depends on ever increasing number of initial states.
 - So statistics often best way to describe.
 - E.g., “Most likely outcome is…”

- So class III useful for problems that are amenable to statistical mechanics, randomness, or complicated geometric structures.
Utility of Class III: Examples

- Statistical mechanics problems include
 - Magnetic behavior.
 - Fluid flow.
 - Group behavior.
 - Bird flocks.

- Problems with “randomness” include
 - Rainfall patterns.
 - Percolation.

- Problems with complicated geometries
 - Seashell designs.
 - Non-trivial zebra stripes.
 - Phase changes – fractal structures emerge.

- Stay tuned. We will focus on these applications later in the semester.
Utility of Class IV: Everything And All of the Above!

- Ultimate computers.
 - We keep saying Class IV is “universal”.
 - So capable of computing/simulating anything
 - simulates any algorithm
 - So in particular can simulate any CAs from class I, II, or III.
 - Whoa! Is that cool or what.
Utility of Class IV: On the Edge

- Also, has obvious applications to anything that is not ordered but not chaotic either.
 - E.g., many believe that “thinking” and “life-like” simulations fall into this class.
 - E.g., can use class IV CA to specify successful foraging strategies in artificial life simulations.
 - Phase changes.
 - Yeah, I know. Also listed in class III. Depends on what you are studying.

Philosophical Implications

- Halting versus not halting.
- Limits of computability.
- Nature of the universe. See next slide!
Class IV: Universe?

- An argument presented by Wolfram.
 - Class IV CA are “computers” that act on their “programs”.
 - Initial configuration is the program.
 - So suppose have infinite random initial configuration.
 - All sequences of possible values are somewhere on this string.
 - Albeit with infinitesimally small probabilities.
 - So all possible programs are on this infinite string.
 - So CA will run all possible programs in parallel (simultaneously).
 - I.e., anything and everything in the universe will be simulated by a class IV CA with infinite random initial state.
 - Including life! See next slide.
Class IV: Life

- In particular, the initial state will have programs that self-replicate and proliferate.
 - Recall first day of class?
 - Von Neumann was using CA to look for self-replicating structures.
 - He designed one, and so have many others.
 - In fact, the initial state will even have a program that simulates a genetic algorithm.

- If program self-replicates, then it will eventually dominate the CA’s state.

- So self-reproducing (life-like) structures may have infinitely small probabilities in the beginning, but they will dominate the CA in the end!
 - “Life” is inevitable.
 - Again, can you say “cool”?