Binary Search Trees
Why Use Binary Trees?

• Searches are an important application.
• What other searches have we considered?
 • brute force search (with array or linked list)
 – O(N)
 • binarySearch with a pre-sorted array (not a list!)
 – O(log(N))
• Binary Search Trees are also O(log(N)) on average.
 • So why use ‘em?
 – Because sometimes a tree is the more natural structure.
 – Because insert and delete are also fast, O(logN). Not true for arrays.
So It’s a Trade Off

• Array Lists
 • O(N) insert
 • O(N) delete
 • O(N) search (assuming not pre-sorted)

• Linked Lists
 • O(1) insert
 • O(1) delete
 • O(N) search

• Binary Search Tree
 • O(log(N)) insert
 • O(log(N)) delete
 • O(log(N)) search
 – on average, but occasionally (rarely) as bad as O(N).
Search Tree Concept

- Every node stores a value.
 - Every left subtree (i.e., every node below and to the left) has a value less than that node.
 - Every right subtree has a value greater than that node.
Question: Is This a Binary Search Tree?

No. Why not?
So S’pose We Wanna’ Search

- Search for 4
 1. start at root 7.
 2. move to 3 on left, because 4 < 7.
So S’pose We Wanna’ Search (cont.)

- Search for 4.

 3. Now move to right because 4 > 3.
 4. Now move to left because 4 < 6.
 5. Now move to left because 4 < 5. But nowhere to go!
How Many Steps Did That Take?

- 7 to 3 to 6 to 5. Three steps (after the root).
- Will never be worse than the distance from the root to the furthest leaf (*height*!).
- On average splits ~twice at each node.
So Time To Search?

- So double the number of nodes at each layer.
- It’s like “doubling the counter variable each time through a for loop.” How long does that take to run?
- \(\log(N)\)
Big-O of Search

- S’pose tree bifurcates at every node. (This is an assumption that could be relaxed later).
- Each time we step down a layer in the tree, the # of nodes we have to search is cut in half.

Holds half the remaining nodes.
Big-O of Search (cont. 1)

- For example, first we have to
 - search 15 nodes \(= 2^4 - 1 \)
 - then 7 nodes \(= 2^3 - 1 \)
 - then 3 nodes \(= 2^2 - 1 \)
 - then 1 node \(= 2^1 - 1 \)

- Now, note that tree has \(\sim 2^{h+1} - 1 \) nodes where \(h = \) height of the tree.
 - The height is the longest path (number of edges) from the root to the farthest leaf.
Big-O Search (cont. 2)

- So total number of nodes is
 \[N = 2^{h+1} - 1 \]
 Or \[N \approx 2^{h+1} \] (true for big N)

- Now how many steps do we have to search? A max of “h+1” steps (4 steps in the example above).

- What is h? Solve for it!
 \[\log(N) = (h+1) \times \log(2) \]
 \[h = \frac{\log(N)}{\log(2)} - 1 \]

- So \(h = O(\log N) \). Wow! That’s how long it takes to do a search.
findMin and findMax

- Can get minimum of a tree by always taking the left branch.

- Can get maximum of a tree by always taking right branch.

- Example…
Inserting an Element Onto a Search Tree?

• Works just like “find”, but when reach the end of the tree, just insert.

• If the element is already on the tree, then add a counter to the node that keeps track of how many there are.

• Do an example with putting the following unordered array onto a binary search tree.
 • \{21, 1, 34, 2, 6, -4, -5, 489, 102, 47\}
Insert Time

• How long to insert N elements?
 – Each insert costs $O(\log(N))$.
 – There are N inserts.
 – Therefore, $O(N\log(N))$

• Cool, our first example of something that takes $N\log N$ time.
Deleting From Search Tree?

- Ugh. Hard to *really* remove.
 - See what happens if erase a node. Not a search tree.
 - Must adjust links…
 - There is a recursive approach (logN time), or can just reinsert all the elements in the subtree (NLogN time)

- Easiest to do “lazy deletion”.
 - Usually are keeping track of duplicates stored in each node.
 - So just decrement that counter. If goes below 1, then the node is empty.
 - If node is empty, ignore the node when doing find’s etc.
 - So delete is \(O(\log N) \)

Tell me why?
Humdinger.

• OK, so on average, insert and delete take $O(\log N)$ time.
• But remember the tree we created with
 \{21, 1, 34, 2, 6, -4, -5, 489, 102, 47\}?
• Let’s do the same thing with the array pre-sorted.
 \{-5, -4, 1, 2, 6, 21, 34, 47, 102, 489\}?
• Whoa, talk about unbalanced!

(Note: there isn’t a unique tree for each set of data!)
Worst Case Scenario!

• Remember how everything depended on having an average of two children per node?
 • Well, it ain’t happenin’ here.

• In this case, the depth is N. So the worst case is that we could have $O(N)$ time for each insert, delete, find.
 • So if insert N elements, took $O(N^2)$ time.
 • Ugh.
We want as many right branches as left branches.

Whole “branch” of mathematics dealing with this.
 • (har, har, very punny!)

Complicated, but for *random data*, is usually irrelevant for small trees.

Phew, so we are ok *(usually)*.
Sample Implementation (Java)

```java
public class BinaryNode {

    public int value;
    public BinaryNode left;
    public BinaryNode right;

    public int numInNode; //optional – keeps track of duplicates (and lazy deletion)

    /**constructor – can be null arguments*/
    public BinaryNode(int n, BinaryNode lt, BinaryNode rt) {
        value = n;
        left = lt;
        right = rt;
        numInNode = 1;
        deleted = false;
    }
}
```
Sample Implementation (C)

```c
struct BinaryNode;
typedef struct BinaryNode *BinaryNodePtr;

struct BinaryNode
{
    int value;
    BinaryNodePtr left;
    BinaryNodePtr right;

    int numInNode;  //optional – keeps track of duplicates
    int deleted;    //optional – marks whether node is deleted
}
```
/** Usually start with the root node. */

public BinaryNode find(int n, BinaryNode node) {
 if (node == null) {
 return null;
 }
 if (n < node.value) {
 return find(n, node.left);
 } else if (n > node.value) {
 return find(n, node.right);
 } else {
 return node; // match!
 }
}

Note: returns the node where n is living.

could be null
/* Usually start with the root node. */

BinaryNodePtr find(int n, BinaryNodePtr node)
{
 if(node == NULL)
 return NULL;
 if(n < node->value)
 return find(n, node->left);
 else if (n > node->value)
 return find(n, node->right);
 else
 return node; //match!
}
Other Trees

• Many types of search trees
 – Most have modifications for balancing
 • B-Trees (not binary anymore)
 • AVL-trees (restructures itself on inserts/deletes)
 • splay-trees (ditto)
 • etc.
So-So Dave Tree

• Each time insert a node, recreate the whole tree.
 1. Keep a separate array list containing the values that are stored on the tree.
 • so memory intensive! Twice the storage.
 2. Now add the new value to the end of the array.
 3. Make a copy of the array. …
 • ooooooh, expensive. O(N).
 4. Randomly select an element from the copied array.
 • because randomly ordered, will tend to balance the new tree
 • O(1)
 5. Add to new tree and delete from array.
 • oooh, O(logN) insert
 • ughh, O(N) delete
 6. Repeat for each N. So what’s the total time????

O(N^2) for inserts. Why?
Can You Do Better?

• Improve the “So-So Dave Tree.”
 • p.s. It can be done!
 • p.p.s. Consider storing in something faster like a linked list, stack, or queue… You still have to work out details.
 • p.p.p.s. That’s the “Super Dave Tree.”
 • p.p.p.p.s. Bonus karma points if your solution isn’t the “Super Dave Tree” and is something radically different.
 • p.p.p.p.p.s. No karma points if you use a splay tree, AVL tree, or other common approach, but mega-educational points for learning this extra material.